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Muraglitazar/BMS-298585 (2) has been identified as a non-thiazolidinedione PPAR R/γ dual
agonist that shows potent activity in vitro at human PPARR (EC50 ) 320 nM) and PPARγ
(EC50 ) 110 nM). Compound 2 shows excellent efficacy for lowering glucose, insulin,
triglycerides, and free fatty acids in genetically obese, severely diabetic db/db mice and has a
favorable ADME profile. Compound 2 is currently in clinical development for the treatment of
type 2 diabetes and dyslipidemia.

Introduction
Type 2 diabetes mellitus is a chronic and devastating

disease characterized by hyperglycemia, insulin resis-
tance, and perturbations in fat, protein, and carbohy-
drate metabolism. According to the World Health Or-
ganization, approximately 150 million people are afflicted
with the disease worldwide with projections of 300
million by the year 2025.1 Risk factors for type 2
diabetes include obesity, genetic predisposition, physical
inactivity, history of gestational diabetes, impaired
glucose tolerance, race, and ethnicity. Patients with type
2 diabetes often also suffer from dyslipidemia in the
form of high plasma triglycerides and low HDL-
cholesterol levels, both considered risk factors for coro-
nary heart diseases.2 Current treatments for type 2
diabetes include biguanides, sulfonylureas, insulin for-
mulations, R-glucosidase inhibitors, insulin sensitizers,
and insulin secretagogues.3 Two thiazolidinediones,
rosiglitazone4 and pioglitazone,5 representing a novel
class of insulin-sensitizing peroxisome proliferator-
activated receptor γ (PPARγ) agonists have been in
clinical use as antidiabetic drugs. Fibrates (e.g., fenofi-
brate and gemfibrozil), which lower triglycerides and
elevate HDL levels, are weak PPARR agonists and have
been in clinical use for the treatment of dyslipidemia.
A dual PPARR/γ agonist that improves insulin sensitiv-
ity, lowers glucose, and corrects lipoprotein abnormali-
ties would be of great interest as a drug for the
treatment of type 2 diabetes. A number of PPAR
agonists (R- and γ-selective; R/γ dual) have been or
currently are in clinical development.6-9 AZ-2426 and
KRP-297/MK-7677 are PPARR/γ dual agonists, while GI-

262570/farglitazar9 is a selective PPARγ agonist and
GW-957810 is a PPARR-selective agonist. In this paper
we describe the design, synthesis, and in vivo charac-
terization of 2, a novel, non-thiazolidinedione PPARR/γ
dual agonist that shows promise for the treatment of
type 2 diabetes and the associated dyslipidemia.

Our initial lead, the oxybenzylglycine 1, was concep-
tually derived via homologation of a novel azaisostere
structure drawn from known R-alkoxy and R-aminoaryl-
propanoic acid PPAR ligands (Figure 1).6,9,11,12 Signifi-
cant advantages gained from this change include the
elimination of a chiral center, simplification of synthesis,
and opportunities for rapid generation of diversity from
the lead structure. Thus, exploration of the replacement
of the N-benzyl moiety of 1 was carried out in an effort
to optimize the relatively weak in vitro potency of 1. One
of the approaches involved the synthesis of a set of
carbamate acids, facilitated by iterative solution-phase
parallel synthesis. Several of these carbamate acids
showed promising oral in vivo activity, and 2 was
identified from this effort as an optimized candidate for
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Figure 1. Design of oxybenzylglycines.
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in vivo efficacy and ADME profiling. Scheme 1 describes
a scalable preparation of 2.

Chemistry
Alkylation of 4-hydroxybenzaldehyde with the phen-

yloxazole mesylate 4, prepared readily from commer-
cially available alcohol 3, yielded aldehyde 5, which was
reacted with glycine methyl ester under standard
reductive amination conditions13 to provide secondary
amine 6 in excellent yield. Reaction of amine 6 with
4-methoxyphenyl chloroformate followed by hydrolysis
of the methyl ester afforded 2 in 94% yield.

Results and Discussion
As shown in Table 1, 2 binds with high affinity to

PPARR (IC50 ) 250 nM) and PPARγ (IC50 ) 190 nM).
In transactivation assays 2 shows potent and novel
functional activity at the full-length human receptors
for PPARR (EC50 ) 320 nM; intrinsic activity at 1 µM
is 70%) and PPARγ (EC50 ) 110 nM; intrinsic activity
at 1 µM is 82%). Thus, 2 shows functional activity
comparable to that of rosiglitazone at PPARγ and is

considerably more potent than the fibrates (e.g., fenofibric
acid) at PPARR. There was no cross-reactivity against
other nuclear hormone receptors such as PPARδ, RXRR,
RARs, ERR/â, AR, and PR. Furthermore, in a pre-
adipocyte differentiation assay (Table 2), which mea-
sures the extent of predominantly PPARγ-mediated
differentiation of preadipocytes into triglyceride-loaded
adipocytes, 2 induced a 3-fold increase in differentiation,
indicating potent activation of PPARγ. This level of
activity was comparable to that of rosiglitazone, a
known selective PPARγ agonist. WY-14643, a potent
and selective PPARR agonist, was used as a negative
control in this assay.

An in vivo study of 2 was carried out in genetically
obese male db/db mice (at a dose of 10 mpk/day for 14
days). Compound 2 was highly efficacious in this study,
reducing levels of glucose (-54%, representing normal-
ization), triglycerides (-33%, representing normaliza-
tion), nonesterified fatty acids (-62%), and insulin
(-48%) (Table 3). Glucose normalization with concomi-
tant reduction in insulin levels suggests insulin sensi-
tizing antidiabetic effects through PPARγ activation.
Presumably, the triglyceride lowering effect is predomi-
nantly mediated through PPARR activation.

Compound 2 has an excellent ADME profile that is
suitable for clinical development (Table 4). It has very
good oral bioavailability in rats (88%), with a reasonable
plasma t1/2 of 7.3 h and low systemic clearance of 3 mL
min-1 kg-1. In male beagle dogs and cynomolgus
monkeys, the oral bioavailability was 18% and 79%,
respectively. The oral absorption was rapid, with Tmax
occurring at 0.6 h in both species. The corresponding
Cmax values were 0.12 µg/mL in dogs (1 mg/kg oral dose)
and 15.7 µg/mL in monkeys (2 mg/kg oral dose).

In conclusion, 2 is a potent, novel non-thiazolidinedi-
one PPARR/γ dual agonist in vitro that demonstrates

Scheme 1. Synthesis of 2a

a (a) MeSO2Cl, Et3N, CH2Cl2, 25 °C, 1 h, >98%; (b) 4-hydroxy-
benzaldehyde, K2CO3, CH3CN, 95 °C, 24 h, 71%; (c) H2NCH2-
CO2Me‚HCl, Et3N, 4 Å molecular sieves, anhydrous MgSO4,
MeOH, 25 °C, 12 h; NaBH4, 25 °C, 3.5 h, 80%; (d) 4-methoxyphenyl
chloroformate, Et3N, CH2Cl2, 25 °C, 2 h, 98%; (e) LiOH‚H2O, THF/
H2O (1:1), 25 °C, 2.5 h, 94%.

Table 1. In Vitro Receptor Binding and Transactivation
Activity Profile of 2a

hPPARRb hPPARγb

IC50 EC50 IC50 EC50

1 1.4 0.02 (103%) 4.8 1.5 (111%)
2 0.25 ( 0.08 0.32 ( 0.1

(70 ( 4%)b
0.19 ( 0.07 0.11 ( 0.06

(82 ( 4%)b

rosiglita-
zone

>100 µM >32 µM 0.25 0.14 (100%)

GW-2331 0.538 ( 0.165 <0.02
(102 ( 3%)

0.316 ( 0.126 0.425 ( 0.07
(64 ( 3%)

fenofibric
acid

>10.0 >10.0 (30%) >25 µM >100 µM

a IC50 and EC50 are in µM and are defined in the Experimental
Section. b Intrinsic activity at 1 µM relative to a primary standard
(at 1 µM), expressed as a percentage, is represented in parenthe-
ses. GW-233114 and rosiglitazone15 were used as primary stan-
dards for PPARR and PPARγ activity, respectively.

Table 2. In Vitro Transactivation Activity of 2 in 3T3L-1
Preadipocyte Cells (PPARγ)

compds
triglycerides in

cell lysate (mg/dL)a

vehicle 15 ( 1
2 (R/γ) 46 ( 2
WY-14643 (R) 13 ( 2
rosiglitazone (γ) 48 ( 3

a 3T3L-1 cells were incubated in the presence of 1.0 µM test
compound.

Table 3. Glycemic and Lipid Lowering Effects of 2 in Male
db/db Mice

plasma parameters
vehicle

(n ) 10 mice/group)

2
(10 mg kg-1 day-1,

14 days)

glucose (mg/dL) 259.0 ( 24.0 120.0 ( 8.0 (-54%a)
triglycerides (mg/dL) 124.0 ( 5.0 84.0 ( 7.0 (-33%a)
free fatty acids (mequiv/L) 0.67 ( 0.07 0.25 ( 0.06 (-62%a)
insulin (ng/mL) 3.9 ( 0.6 2.0 ( 0.2 (-48%a)

a Difference between vehicle and drug treated groups; p e 0.05.

Table 4. Pharmacokinetic Profile of 2 in Male SD Ratsa

oral intra-arterial

dose (mg kg-1) 10.0 5.0
AUC∞ (µg h mL-1) 49.0 ( 7.3 27.7 ( 3.8
Cmax (µg mL-1) 20.8 ( 2.4
Tmax (h) 0.4 ( 0.1
T1/2 (h) 7.3 ( 4.0
Cl (mL min-1 kg-1) 3.0 ( 0.4
Vss (L kg-1) 0.6 ( 0.2
F (%) 88

a n ) 3.
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highly efficacious glucose and lipid lowering activities
in vivo along with an excellent ADME profile. Com-
pound 2 is currently in clinical development for the
treatment of diabetes and associated dyslipidemia.
PPARR/γ dual agonists such as 2 may also be of utility
in establishing a therapeutic modality for the treatment
of metabolic syndrome (which is characterized by im-
paired glucose tolerance, hyperinsulinemia, dyslipi-
demia, and hypertension).

Experimental Section
[(4-Methoxyphenoxycarbonyl)-{4-[2-(5-methyl-2-phen-

yloxazol-4-yl)ethoxy]benzyl}amino]acetic Acid (2). To a
10 °C solution of amine 6 (16.6 g, 43.7 mmol) in 200 mL of
CH2Cl2 were successively added Et3N (9.13 mL, 65.5 mmol)
and 4-methoxyphenyl chloroformate (7.65 mL, 50.2 mmol)
dropwise while maintaining the reaction temperature at e12
°C. The mixture was allowed to warm to 25 °C and stirred for
2 h. Volatiles were removed in vacuo, and the residue was
chromatographed (SiO2; 4:1 to 1:1 hexanes/EtOAc) to afford 2
methyl ester (22.8 g, 98%) as a colorless, viscous oil.

To a solution of the above methyl ester (18.75 g, 35.4 mmol)
in THF (275 mL) was added a solution of LiOH‚H2O (4.44 g,
105.9 mmol) in 275 mL of H2O. The resulting mixture was
stirred at 25 °C for 2.5 h, after which the pH was adjusted to
∼4 with 1 N aqueous HCl. The THF was removed in vacuo,
the residue was diluted with 800 mL of EtOAc, and the
mixture was stirred for 0.5 h at 25 °C. The organic phase was
separated, dried (MgSO4), and concentrated in vacuo to afford
a solid, which was recrystallized from EtOH to give 2 (8.41 g)
as a colorless solid. An additional 8.76 g of product was
recovered in two subsequent recrystallizations from the mother
liquor to give 2 (17.2 g total) in 94% yield. Mp: 139.1-140.2
°C. 1H NMR (400 MHz, CDCl3): rotamers, δ 2.38/2.39 (s, 3H,
oxazole-CH3), 3.00/3.01 (s, 2H, oxazole-CH2), 3.77/3.78 (s, 3H,
ArOCH3), 4.02 (s, 2H, -CH2COOH), 4.20-4.24 (m, 2H,
-CH2CH2OAr), 4.55 (s, 1H, ArCHaHbN), 4.65 (s, 1H, Ar-
CHaHbN), 6.8-7.0 (m, 4H), 7.0-7.1 (m, 2H), 7.2-7.3 (m, 2H),
7.40-7.45 (m, 3H), 7.96-7.98 (m, 2H). 13C NMR (100 MHz,
CDCl3): rotamers, δ 10.2 (oxazole-CH3), 26.0 (oxazole-CH2-),
47.3/47.5 (CH2COOH), 51.0/51.2 (ArCH2N), 55.6 (ArOCH3),
66.7 (oxazole-CH2CH2OAr), 114.3, 114.8, 122.5, 126.0, 127.3,
128.4, 128.7, 129.2, 129.9/130.1, 132.4, 144.8, 145.3, 155.4/
155.5, 157.1, 158.5, 159.7, 173.0. Anal. Calcd for C29H28N2O7:
C, 67.43; H, 5.46; N, 5.42. Found: C, 67.45; H, 5.47; N, 5.29.
IR (KBr): 2800-3200 (w, br), 1724 (vs), 1511 (s), 1197 (s), 1171
(s) cm-1. UV (MeOH, 13.9 mg/L): λmax 224, 277, 282 (sh), 290
(sh), 302 (sh) nm. LRMS (M + H+): 517.19. HRMS Calcd for
C29H29N2O7: 517.1975. Found: 517.1964.
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Note Added after ASAP Publication. This manu-
script was released ASAP on 11/13/2004 with an incom-
plete author byline, with errors in the EC50 values in
the abstract, and with a labeling error in Scheme 1. The
correct version was posted on 12/6/2004.
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2003, 28 (10), 959-965. Presented at the 61st Scientific Sessions
of the American Diabetes Association, Philadelphia, PA, June
22-26, 2001; Poster Nos. 483-489.

(7) KRP-297/MK-767: Nomura, M.; Kinoshita, S.; Satoh, H.; Maeda,
T.; Murakamo, K.; Tsunoda, M.; Miyachi, H.; Awano, K. (3-
Substituted benzyl)thiazolidine-2,4-diones as Structurally New
Antihyperglycemic Agents. Bioorg. Med. Chem. Lett. 1999, 9 (4),
533-538.
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